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In Hall thrusters, the potential distribution plays an important role in discharge processes and ion
acceleration. This paper presents a 2D potential solver in the Hall thruster instead of the “thermalized
potential”, and compares equipotential contours solved by these two methods for different magnetic
field conditions. The comparison results reveal that the expected “thermalized potential” works very
well when the magnetic field is nearly uniform and electron temperature is constant along the
magnetic field lines. However for the case with a highly non-uniform magnetic field or variable
electron temperature along the magnetic field lines, the “thermalized potential” is not accurate. In
some case with magnetic separatrix inside the thruster channel, the “thermalized potential” model
cannot be applied at all. In those cases, a full 2D potential solver must be applied. Overall, this paper
shows the limit of applicability of the “thermalized potential” model. VC 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4821018]

I. INTRODUCTION

A Hall thruster (HT) is a propulsion device in which ions
are accelerated in a quasi-neutral plasma. An electric field in
the HT is sustained across the magnetic field. Because of this
feature, HTs offer a much higher thrust density than other
types of ion thrusters. In particular, some advanced thrusters,
which possess complex magnetic field topology (complex
curvature of the magnetic field lines) have a higher efficiency
(!60%), a lower divergence (!622" for krypton and !611"

for xenon) and a longer lifetime (10 400 h) due to reduced
erosion.1–8

In the HT discharge channel, the potential distribution
plays an important role in discharge processes and ion accel-
eration (Fig. 1). Near the thruster exit plane, the potential
drops accelerate the ions,4 thereby produce a thrust; and the
potential distribution could largely affect the plasma dynam-
ics and plasma-wall interactions. The potential in the HT
channel is governed by the magnetic field distribution in that
the equipotential contours tend to parallel with the magnetic
field lines. This stems from the fact that the electric field
tends to be zero along magnetic field lines due to high elec-
tron mobility in this direction.9

In order to simplify analysis of the potential distribution
in the HT, Morozov10 introduced the so-called “thermalized
potential” based on the momentum equation with the assump-
tion of a constant electron temperature along the magnetic
field line. In previous modeling works of HTs, the
“thermalized potential” is usually assumed to make it possi-
ble to reduce the two dimensional calculation of the electric
field to a one-dimensional problem. Indeed, this approach
produces reasonably good accuracy in modeling conventional

HTs.11–13 Due to the magnetic field, the mobility value is
much larger for electron transport along magnetic field lines
than across them.14 Therefore, the “thermalized potential”
could be considered constant along the magnetic field lines.
The modeling approach based on “thermalized potential”
requires that the magnetic field lines intersect walls of the
channel allowing potential calculation in a 1D manner along
the centerline. However, when the curvature of magnetic field
lines becomes complex, the “thermalized potential” may not
accurately predict the true plasma conditions anymore. In
order to address the case of a complex magnetic field topol-
ogy, one needs to consider a 2D potential solver. Mikellides
has introduced the Hall2De solver,8 which treats Ohm’s law
in the frame of reference of the magnetic field (parallel and
perpendicular components, respectively). Komurasaki uti-
lized a 2D potential solver,15 which calculates the coefficients
parallel or perpendicular to the magnetic field lines, then mul-
tiplies the rotation matrix based on the angle of magnetic field
lines relative to the axis. Both solvers are based coordinate
system aligned with the magnetic field. Such approach
becomes troublesome when complex magnetic topology is
considered.

This paper presents a 2D potential solver, which is based
on the axial direction and radial direction, instead of the
“thermalized potential” in HTs. Then the comparisons
between equipotential contours of the plasma potential,
solved by 2D potential solver, and the “thermalized
potential” for different magnetic field conditions establish
the limits of applicability of the potential solver based on the
“thermalized potential” model.

II. MODELING APPROACH

Based on Refs. 9 and 16, the 2D potential solver is
presented. The generalized Ohm’s law comes from the
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momentum equation of motion for the electron fluid. It can
be written as

~E ¼
~Je

r
$ 1

ne
~Je % ~B $ 1

ne
~rPe; (1)

where ~Je is the electron current, Pe is the electron pressure,
~B is the magnetic strength, r ¼ lne, and l ¼ e=mevei. e is
the elementary charge, n is the electron density, me is the
mass of electron, and vei is the collision frequency between
ions and electron. From the electron equation of state (ideal
gas): Pe ¼ nkTK

e ¼ neTe, ~rPe ¼ ne~rTe þ eTe
~rn is

obtained (TK
e in K unit; Te in eV unit).

Thus, the electron current density could be obtained as
the following generalized Ohm’s Law formulation:

~Je ¼ lð~Je % ~BÞ þ r~E þ rð~rTe þ Te
~r ln nÞ: (2)

Expanding Eq. (2), a set of three equations can be written for
electron current components in the axial, radial, and azi-
muthal directions:

jz ¼ lðjhBr $ jrBhÞ þ rEz þ rðrzTe þ Terz ln nÞ; (3)

jr ¼ lðjzBh $ jhBzÞ þ rEr þ rðrrTe þ Terr ln nÞ; (4)

jh ¼ lðjrBz $ jzBrÞ þ rEh þ rðrhTe þ Terh ln nÞ: (5)

Due to the axisymmetric geometry of the HT, the elec-
tric field and gradient of the electron temperature and the
plasma density in the azimuthal direction are assumed to be
zero. It should be pointed out that this is simplification of the
model in light of recent experiments demonstrates azimuthal
spokes.17 With this simplification, the azimuthal electron
current density is no longer a function of any azimuthal
quantities and it can be written as

jh ¼ lðjrBz $ jzBrÞ: (6)

It is now possible to substitute jh into Eqs. (3) and (4)
for the axial and radial electron current density. This leads to
the following set of coupled linear equations:

jz ¼ lðlðjrBz $ jzBrÞBr $ jrBhÞ þ rEz

þ rðrzTe þ Terz ln nÞ; (7)

jr ¼ lðjzBh $ lðjrBz $ jzBrÞBzÞ þ rEr

þ rðrrTe þ Terr ln nÞ: (8)

This equation system can be solved to isolate the axial
and the radial components of the electric current density

jz ¼ l11rðEz þrzTe þ Terz ln nÞ

þ l12rðEr þrrTe þ Terr ln nÞ; (9)

jr ¼ l21rðEz þrzTe þ Terz ln nÞ

þ l22rðEr þrrTe þ Terr ln nÞ; (10)

where

l11 ¼
1þ l2B2

z

1þ l2B2
;

l12 ¼
lBh þ l2BzBr

1þ l2B2
;

l21 ¼
$lBh þ l2BzBr

1þ l2B2
;

l22 ¼
1þ l2B2

r

1þ l2B2
;

and

l ¼ e

mev
:

Similarly to Ref. 11, v ¼ ven þ vew þ vB is the effective elec-
tron collision frequency.

The following simplifications are used to more easily
manipulate the equation system:

jz ¼ Z1Ez þ Z2Er þ Z3; (11)

jr ¼ R1Ez þ R2Er þ R3; (12)

and

Z1 ¼ l11r;

Z2 ¼ l12r;

Z3 ¼ l11rðrzTe þ Terz ln nÞ þ l12rðrrTe þ Terr ln nÞ;

R1 ¼ l21r;

R2 ¼ l22r;

R3 ¼ l21rðrzTe þ Terz ln nÞ þ l22rðrrTe þ Terr ln nÞ:

One can employ the current conservation equation, i.e.,

@jr

@r
þ @jz
@z
þ jr

r
¼ 0: (13)

Substitute jz, jr (Eqs. (11) and (12)) into Eq. (13) and using
finite-difference method, one can obtain

ðRn
2En

r $ Rs
2Es

rÞ ) Dzþ ðZe
1Ee

z $ Zw
1 Ew

z Þ ) Dr ¼ S; (14)

FIG. 1. Schematic drawing of the discharge channel of the Hall thruster.
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where

S ¼$ ½ðRn
1En

z þ Rn
3Þ $ ðR

s
1Es

z þ Rs
3Þ+ ) Dz

$½ðZe
2Ee

r þ Ze
3Þ $ ðZ

w
2 Ew

r þ Zw
3 Þ+ ) Dr

$ 1

r
ðR1Ez þ R2Er þ R3Þ ) Dz ) Dr:

The e, w, n, and s means that it is the value on the east, west,
north, and south boundary of the node, respectively.

Substituting ~E ¼ $~ru into Eq. (14), the following
equation can be obtained:

ui;j¼
1

Ze
1þZw

1 þRn
2þRs

2

%ðZe
1uiþ1;jþZw

1 ui$1;jþRn
2ui;jþ1þRs

2ui;j$1$SÞ: (15)

Using Successive Over-Relaxation (SOR) method,18 the
following equation can be obtained:

uðnþ1Þ
i;j ¼uðnÞi;j þ x

1

Ze
1 þ Zw

1 þ Rn
2 þ Rs

2

% ðZe
1u
ðnÞ
iþ1;j þ Zw

1 uðnþ1Þ
i$1;j þ Rn

2u
ðnÞ
i;jþ1 þ Rs

2u
ðnþ1Þ
i;j$1 $ SÞ;

(16)

the relaxation factor x is 1.9 here.

III. BOUNDARY CONDITIONS

In this section, we present boundary conditions for the
potential solver as well as for ion and neutral flow simula-
tions as shown in Table I.

In Secs. V A and V B, the plasma density and temperature
are assumed to be constant (Te¼ 25 eV; ne¼ 1% 1017 m$3,
which are the same order of magnitude in Ref. 9, 11, and 14);
in Sec. V C, the plasma density and temperature distributions
are non-uniform according to plasma flow simulations.

The defined boundary conditions at the inlet and outlet
are given as the thermalized potential.

IV. THERMALIZED POTENTIAL

The electron transport along magnetic field lines can be
written as a balance between the pressure force and the elec-
tric force19

~rPe ¼ $ene
~E þ meneveið~ui $~ueÞ; (17)

where vei is the electron-ion collision frequency. Because of
collisionless, the second term on the right side could be
neglected

rðneeTeÞ ¼ eneru; (18)

rTe þ
Te

ne
rne ¼ ru: (19)

So along the magnetic field lines, the following equation
is given:

u$ Te $ Te ln ne ¼ const: (20)

Since usually plasma temperature Te is assumed con-
stant along the magnetic field lines, a “thermalized potential”
can be defined based on Eq. (18)

u$ Te ln ne ¼ const: (21)

The left side of Eq. (21) is known as the thermalized poten-
tial. In order to make the comparisons between potential
solved by 2D solver and the “thermalized potential” straight-
forward, the thermalized potential along the centerline of the
channel is given the same value as the potential solved by
2D solver for the case in Secs. V A–V C.

V. RESULTS AND DISCUSSIONS

In this section, we describe the potential distribution in
the case of various magnetic field topologies typical for HTs.
In Sec. V A, a magnetic field having only radial component
is considered and constant plasma density and temperature
are assumed. In Sec. V B, the effect of magnetic field topol-
ogy is investigated by using three different shapes of the
magnetic fields assuming the uniform plasma density and
temperature distribution (Te¼ 25 eV; ne¼ 1% 1017 m$3). In
Sec. V C, the combined effect of magnetic field and plasma
density is investigated.

The magnetic field lines, in Secs. V A and V B, are con-
structed using the magnetic stream function k20

@k
@z
¼ rBr; (22a)

@k
@r
¼ $rBz: (22b)

A. Only radial component. Uniform plasma density
and temperature

In this section, a magnetic field having only radial com-
ponent is considered as shown in Fig. 2. In this calculation,
uniform plasma density and temperature are assumed. The
corresponded potential distribution is shown in Fig. 2(d).
One can see that solution based on the 2D potential solver is
almost identical to that based on the “thermalized” potential
assumption. This is due to the fact that the main component
of electron velocity is along the magnetic field lines, the
~Je % ~B ! 0.

B. Effect of the complex magnetic field topology.
Uniform plasma density and temperature

In this section, three different shapes of the magnetic
fields (Case 1–3) are considered, and the plasma density and
temperature are constant (Te¼ 25 eV; ne¼ 1%1017 m$3). In
Figs. 3–5, (a) are the magnetic field lines; (b) are the mag-
netic field strengths, which are from FEMM (Finite Element
Method Magnetics) simulations, respectively; (c) is the

TABLE I. The potential boundary conditions used in the modeling.

Inlet Outlet Outer wall Inner wall

Defined Defined @u=@r ¼ 0 @u=@r ¼ 0
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radial magnetic component along the channel centerline; and
(d) is the comparison of the equipotential contours of plasma
potential with “thermalized potential” (black dashed lines).
FEMM,21 is a user-friendly magnetic field solver available
on the internet for solving 2D planar and axisymmetric mag-
netic field problems.

Results shown in Fig. 3 are based on the simulation for
the uniform magnetic field (Case 1). In the entire domain, the
equipotential contours of plasma potential and “thermalized

potential” are close to each other, but the near wall part. The
reason is that in the near wall region, the ~Je % ~B term is not
zero, which has been neglected in the “thermalized potential.”

Results shown in Fig. 4 are based on the simulation for
the magnetic field (Case 2). One can see that in this case, the
equipotential contours of plasma potential and “thermalized
potential” are close to each other near the outlet of the HT
channel, but there are significant discrepancies in the near
anode region.

FIG. 2. Magnetic field and plasma potential distribution: (a) magnetic field lines, (b) magnetic field strength (unit: T), (c) Br along the channel centerline,
(d) comparison of equipotential contours of plasma potential with “thermalized potential” (black dashed lines).

FIG. 3. Magnetic field and plasma potential distribution (Case 1): (a) magnetic field lines (Case 1), (b) magnetic field strength (unit: T), (c) Br along the chan-
nel centerline (Case 1), (d) comparison of equipotential contours of plasma potential with “thermalized potential” (black dashed lines).
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Results of potential calculation for the case of a complex
magnetic field (Case 3) are shown in Fig. 5. It can be seen
that the equipotential contours calculated using the consid-
ered solver and the potential calculated based on the
“thermalized potential” are significantly different in shape
and magnitude especially in the region of low magnetic field
(separatrix). The discrepancy is mainly caused by neglecting
the term ~Je % ~B in the “thermalized potential”. It should be

pointed out that thermalized potential model cannot be used
in this region.

C. Effect of the complex magnetic field geometry.
Non-uniform plasma density and temperature

In this section, a combined effect of magnetic field
topology, plasma density, and electron temperature will be

FIG. 4. Magnetic field and plasma potential distribution (Case 2): (a) magnetic field lines (Case 2), (b) magnetic field strength (unit: T), (c) Br along the chan-
nel centerline (Case 2), (d) comparison of equipotential contours of plasma potential with “thermalized potential” (black dashed lines).

FIG. 5. Magnetic field and plasma potential distribution (Case 3): (a) magnetic field lines (Case 3), (b) magnetic field strength (unit: T), (c) Br along the chan-
nel centerline (Case 3), (d) comparison of equipotential contours of plasma potential with “thermalized potential” (black dashed lines).
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described. Analysis of the plasma flow in the HT channel is
performed using the hydrodynamic model of the plasma.11

As a simplified representation of the flowfield in the thruster
channel, the following distribution of plasma density and
temperature shown in Fig. 6, which are similar to the results
solved by hydrodynamic model of the plasma,11 are
employed in the analysis.

In this case, we consider three different shapes of the
magnetic field distribution (corresponded to Cases 1–3 as
shown in Figs. 3–5). The potential distributions solved
by 2D solver and the thermalized potential are shown in
Fig. 7.

It should be pointed out that the difference between the
“thermalized potential” approach and generalized Ohm’s
law (i.e., Eq. (17) and Eq. (1)) is the term ~Je % ~B which is
neglected in Eq. (17). Generally, the electron current and the
magnetic field are not parallel, especially in the non-uniform
or complex fields and thus this term is non-zero. Therefore,
strictly speaking the correct potential cannot be calculated

using the “thermalized potential” approximation. This point
has been demonstrated in Sec. IV.

It can be concluded that the axial magnetic component
can cause the discrepancy between the equipotential con-
tours calculated using the potential solver and that based on
the “thermalized potential” model. Granted, the radial mag-
netic component is mostly dominant in the traditional HT
channel, so the “thermalized potential” model can work
very well. However, when the magnetic field topologies
become complex (i.e., Bz/Br> ! 0.1) in the advanced HT
channel, like the magnetic in Figs. 4 and 5 (Cases 2 and 3),
the “thermalized potential” model cannot accurately predict
the potential distribution well. One reason is that the axial
magnetic component is in the same order of magnitude to
the radial magnetic component in some regions, the term
~Je % ~B will not be negligible. Another reason is that the
electron temperature is not constant along magnetic field
lines, which is the important assumption for “thermalized
potential.”

FIG. 6. Plasma density and temperature distribution: (a) plasma density distribution (1016 m$3) and (b) plasma temperature distribution (eV).

FIG. 7. Comparison of equipotential contours of plasma potential with “thermalized potential” (black dashed lines). (a) Case 1, (b) Case 2, (c) Case 3.
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VI. CONCLUDING REMARKS

This paper aimed to analyze applicability of widely used
assumption of “thermalized potential” and to define the
“field of use” of application for this approach by analyzing
various magnetic field topologies. Thermalized potential
introduced by Morozov is a very useful concept simplifying
solution of the plasma flow problem in magnetized plasma
devices, such as HT, magnetrons, magneto-insulated diode,
etc. However, applicability of this approach is limited to the
cases in which magnetic field has relatively simple topology.

It can be concluded that the “thermalized potential”
works very well when the magnetic field is nearly uniform
and electron temperature is constant along the magnetic field
lines. But if the magnetic field is highly non-uniform or the
electron temperature is not constant along the magnetic field
lines, the “thermalized potential” is not accurate. The reason
is that the “thermalized potential” is based on the assumption
that electron temperature is constant along the magnetic field
and the term ~Je % ~B ¼ 0. In some case with magnetic sepa-
ratrix inside the thruster channel, when the assumption of
constant electron temperature and the term ~Je % ~B ¼ 0 can-
not be satisfied, “thermalized potential” model cannot be
applied at all. In those cases a full 2D potential solver must
be applied.
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