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Abstract:  Electric propulsion devices for space applications greatly reduce the propellant mass 
requirements on a spacecraft in comparison to chemical rockets. To date, gridded ion engines and 
Hall effect thrusters (HETs) rely on thermionic hollow cathodes to supply electrons for propellant 
ionization and ion beam neutralization. Hollow cathodes consume up to 10% of the total propellant 
used in low-power HET propulsion systems; however, such propellant usage does not contribute to 
thrust generation. An array of Spindt-type, carbon nanotube cold cathodes that emit electrons 
through field emission can potentially neutralize the ion beam without consuming any propellant. 
This work examines the effects that the plasma environment near an operating 200-W BHT-200 
HET has on carbon nanotube cold cathodes placed around the circumference of the thruster at the 
exit plane. For this work, the thruster was operated at the 200 V, 1.05 A operating condition with a 
facility operating condition of 1.1 x 10-6 Torr-Xe. The physical structures that enable field emission 
appear largely unaffected by placement in the plasma as well as operation in the plasma. This 
indicates that a refined design of this carbon nanotube cold cathode could be an alternative to the 
thermionic cathode used on contemporary low-power HETs. 

 

I. INTRODUCTION 
 Hall effect thrusters (HETs) have been used for several decades on space vehicles for station 
keeping and orbital maneuvering [1]. HETs ionize and accelerate propellant electrostatically to generate a 
high-velocity beam of ions. The HET requires a cathode to supply electrons for propellant ionization and 
to neutralize the resultant ion beam to prevent spacecraft charging.  

 The present state-of-the-art cathode used in HETs is the thermionic or hollow cathode, which 
emits electrons from a heated surface. Thermionic cathodes ionize propellant to amplify the number of 
electrons extracted from the cathode in order to achieve the emission current required for HET operation. 
The cathode propellant flow is not accelerated by the thruster to contribute to the thrust. The hollow 
cathode discharge current does not scale well to low power levels, where it may consume as much as 10% 
of the total propellant required by the thruster [2]. In contrast, field emission (FE) cathodes do not 
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consume propellant. The primary consequence of this is up to a 10% increase in system specific impulse 
of the propulsion system. A secondary consequence is a reduction in the propulsion system power 
requirements by reducing the power the cathode consumes. This reduction in power is enabling for low-
power mission applications, such as Cubesats. In this work, we examine the effects of the HET plume 
environment on Spindt-type, carbon nanotube cold cathode (CNCC) technology to evaluate their potential 
as an alternative to the thermionic cathode on low-power HETs. 

 

A. Carbon Nanotube Field Emission 
 FE is a fundamentally different phenomenon of electron emission from a material compared with 

the thermionic emission employed in present state-of-the-art hollow cathodes. Thermionic electron 
emission overcomes the potential barrier of the electronic structure of the material by supplying sufficient 
thermal energy to the electrons [3]. In contrast, FE overcomes the potential barrier by utilizing an electric 
field on the order of 10-102 V/µm to lower the potential barrier enough such that the probability of 
electrons to quantum mechanically tunnel through the barrier becomes significant [4]. FE is achievable at 
room temperatures, but the high electric fields required to realize emission leads to geometry and material 
selection considerations that dominate the design space.  

 The high electric fields required for FE can be attained via a combination of large potential 
differences and small spacing. In the limit of minimizing both the potential and the size of the device, 
electrode spacing is taken to the microscopic level, and the large electric fields are realized through 
geometric factors.  

 Normally, large electric fields (>100 V/μm)   are   needed   for   FE   [5], but this field is highly 
dependent on the electron source geometry, where sharp tips enhance the macroscopic electric field. 
These FE sources can be much more efficient and reliable if emission can be achieved at a sufficiently 
low potential; such systems would provide a marked improvement over current technologies [6-8]. 
Conductive, high aspect ratio nanomaterials, such as carbon nanotubes (CNTs), have this favorable 
geometry for improving FE performance by field enhancement. CNTs are ideal for FE by having very 
high electrical conductivity, high temperature stability, chemical inertness, and a nanoscale, high aspect 
ratio [9-11]. 

 The seminal work in this type of FE design is attributed to Spindt in 1968, and cathodes of this 
type are typically referred to as Spindt FE cathodes [12]. Spindt cathodes incorporate arrays of emission 
tips with an internal gate electrode using silicon microfabrication techniques. Spindt FE tips were 
historically metal cones whose tips are a few hundred nanometers in diameter and recessed underneath 
the gate electrode. An electric potential between the FE tips and the gate electrode produces the high 
electric field necessary to enable FE from the tips. The Spindt design attains high current densities by 
tightly packing a large number of electrostatically isolated emitting elements [13].  

 The metal cones used in traditional Spindt cathodes have drawbacks that are not shared by CNTs. 
As the tips of the metal cones erode from use, the tips blunt and no longer emit as efficiently because their 
field enhancement factor declines. The metal tips can also interact chemically with the ambient 
environment, which can change the electronic structure of the emitting material and inhibit further 
emission. A HET plasma environment also subjects the metal tips of Spindt cathodes to sputtering from 
the plasma, which can permanently degrade their performance at a rate that far exceeds the degradation of 
the thruster [14]. In contrast, carbon has a much lower sputtering rate than the metals used for traditional 
Spindt cathodes [15]. The bond structure of the CNT makes them far less reactive than metal.[9]. 
Additionally, CNTs do not suffer from erosion performance degradation as a result of their whisker like 
geometry, which does not experience appreciable tip blunting from erosion.  

 

B. Carbon Nanotube Cold Cathode Design 
 The details of the CNT electron source specifically designed to prevent shorting of the gate layer 

has been reported elsewhere [16]. In this design, etch pits extend into the Si substrate, and isotropic 
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etching is utilized to create a vertical and lateral buffer zone between the gate and CNTs, respectively. 
Doped silicon serves as the substrate and cathode contact [16]. Thermally-grown SiO2 about 2 μm  thick  is  
used as the insulator, and 500-nm thick doped polycrystalline silicon (p-Si) is used as the gate [16]. Fig. 1 
shows a schematic of the fabrication process. Standard ultraviolet lithography is used to pattern the 
substrate (Fig. 1c). Arrays of 4-µm diameter circles across an 8.5x8.5 mm square with a 50, 100, or 200-
μm  pitch  are  patterned  on  each  die.   

 A Bosch etch process anisotropically etches the p-Si gate (Fig. 1d), and the SiO2 is isotropically 
etched in a buffered oxide etch (BOE) solution (Fig. 1e). A second Bosch etch is used to deepen the etch 
pits by etching into the Si substrate (Fig. 1f). An SF6 reactive ion etch (RIE) process simultaneously 
removes the undercut p-Si and increases the diameter of the Si pit (Fig. 1g). The etch geometry allows for 
electron beam evaporation of the Fe catalyst directly on the base of the pit (Fig. 1h). A low-pressure 
chemical vapor deposition (LPCVD) system with precisely controlled process parameters is used to 
produce uniform and consistent CNT growth (Fig. 1j). The LPCVD synthesis uses C2H2 and NH3 or H2 at 
700 °C and 10 mbar for 0.5-5 minutes. The CNT growth can be precisely controlled, remains aligned past 
the Si pit, and is uniform across many pits [16]. 

 The substrate and CNT  structures  comprise   the  “cathode  electrode”  and  are  referred   to  as  such  
throughout this work. This CNCC design field emits when the cathode electrode is biased negatively with 
respect to the gate electrode.  
 

 
Fig. 1.  Fabrication process flow for the internally gated CNT FE design. 

 

II. EXPERIMENTAL SETUP 
A. Thruster Cathode Array Design 
 A Kyocera gold-plated, plug-in, hybrid bathtub-type package provides the interface between the 
CNCC and the rest of the test circuit. Each package is cut in half to reduce its footprint. Fig. 2 shows one 
CNCC installed on a package. Ablebond 84-ILMI heat cure silver epoxy binds the cathode to the base of 
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the package, which establishes the electrical and mechanical connection between the package base and 
cathode. Wire bonds form high-quality (< 1 Ω) connections between the package and the chip by 
redundantly connecting package pins to the gate on the CNCC and the package base. 

 

 
Fig. 2.  A CNCC emitter chip installed onto a package with silver epoxy. 

 
 The thruster cathode array mechanically and electrically integrates up to 80 packages of CNCCs 

into a single device for reliable interface to the HET and experimental setup. Fig. 3 shows an exploded 
view of the array design and Fig. 4 shows the constructed array. The rigid, detachable array can be reused 
on subsequent experiments, can survive the near-thruster plasma environment, and is light enough to not 
require additional support when fixed to the HET. 

 Four identical circuit boards in the array can each accommodate 20 packages. The circuit boards 
connect all gate electrodes on the installed CNCCs to a common ground plane on the bottom layer of the 
board and connect each cathode electrode to an independent pin on a DB-25 connection installed on the 
board.   All   connections   are   made   through   the   package   pins.   A   3/16”   machined   aluminum   back   plate  
provides mechanical support for the circuit boards and forms the base of the array. The side of the 
aluminum plate interfacing with the circuit boards electrically connects to the ground plane on the bottom 
of the boards. Channels cut into this side of the plate ensure that the circuit boards mount flush against the 
plate without undesirable electrical connections with the solder connections on the boards. The opposing 
side of the plate is Type II anodized at   0.001”   thickness to prevent interference from the plasma 
environment around the thruster. 

 

 
Fig. 3.  Exploded view of the thruster cathode array design. The four major components of the 
array are visible in this view. 

 
 A machined G-10 plate (the board clamp) rests on the opposite side of the circuit boards from the 

back plate and mechanically secures the circuit boards to the back plate. It also provides space between 
the circuit board surface and an anodized aluminum front shield that obscures sensitive parts of the array 
from the plasma environment near the thruster. The thruster cathode array interfaces with a Busek BHT-
200 200-W HET via the six-radially arranged bolt holes located in the center of the array [17]. Alumina 
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spacers installed in the face of the HET electrically isolate to greater than 10 MΩ the thruster cathode 
array from the HET during operation.  

 Fig. 4 shows the placement of 41 CNCCs in the thruster cathode array. All but one CNCC were 
positioned in the furthest radial locations from the HET to capture the effects of the plume on the CNCCs 
and minimize the risk of damaging them. Two of the cathodes were included despite exhibiting a short 
between their cathode and gate immediately after CNT growth. One of the nonfunctional cathodes was 
positioned in the closest radial position (the proximal sample) and the other was positioned in the furthest 
radial position (the distal sample) to determine the effects of the plasma on a nonfunctioning CNCC. Both 
nonfunctional CNCCs were imaged under SEM prior to installation in a repeatable way so that identical 
emission features could be observed both before and after exposure to the HET plasma. 

 

 
Fig. 4.  Thruster cathode array with CNCCs installed and integrated onto a BHT-200 HET. The 
hollow cathode is located beyond the upper border of the image. 

 

B. Test Circuitry 
 The data acquisition system developed for this work biases the cathode electrodes in parallel via a 

common power supply. Each independent cathode channel includes a current shunt and switch to isolate 
failed or defective CNCCs from the rest of the circuit. A National Instruments PXI-1033 data acquisition 
chassis equipped with 2 PXI-2567 external relay driver modules, 2 PXI-2527 multiplexer modules, and 
one PXI-4065 digital multimeter module gathers the data from each of the current shunts during testing. 
The system records data once every 15 seconds with an accuracy of ± 1µA for current and ± 0.5 V for 
source potential.  

 The test circuit shown in Fig. 5 integrates the standard HET circuit with a thermionic hollow 
cathode and the thruster cathode array test circuit. The discharge power supply energizes the anode of the 
HET. A second power supply termed "HET Coil" supplies current to generate the magnetic field needed 
for HET operation. Sharing the discharge low potential with the discharge power supply for the HET, the 
hollow cathode heater and keeper power supplies drive the operation of the thermionic cathode. The low 
side of the HET circuit connects to the cathode electrode side of the thruster cathode array circuit in order 
to make the connection between the two sub-circuits. Between the CNCC power supply and the cathode 
electrodes lies a component titled "Array Switchboard" which serves to isolate each cathode electrode 
onto its own parallel circuit and measure current. The National Instruments data acquisition unit 
interfaces with the Array Switchboard to control the array and acquire the measured current data.  
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Fig. 5.  Full HET test circuit. The HET circuit (top portion) connects to the CNCC circuit (bottom 
portion) via the HET discharge negative line. 

 
 Some additional components added into the circuit protect thruster cathode array components 

from HET transients during operation. The first protective measure is a normally-open isolation switch. It 
is closed once the HET is operating in steady-state and the test is ready to begin. The second line of 
defense is a 315 mA fuse that fails if an overcurrent condition develops in the HET circuit. Previous 
publications detail the standard triode mode of operation of the CNCC devices [16]. In this circuit 
configuration, the gate electrode is biased positively with respect to the cathode electrodes, which float at 
the HET negative discharge potential. The anode of the HET serves as the anode electrode component for 
the triode configuration, and is biased above both the gate and cathode electrodes. Positive cathode 
current is defined to be electrons emitting from the electrode, whereas positive gate current is defined to 
be electrons arriving to the electrode. Positive anode current is defined to be electrons arriving at the 
anode of the HET, signified by electrons traveling from the HET sub-circuit to the CNCC sub-circuit. 

 Also visible in Fig. 5 is a UV photodesorption system. An 18-W lamp placed 0.75 m away from 
the array desorbs gaseous species from the CNT walls and tips prior to initial operation inside the vacuum 
chamber. The VTF-2 facility at the Georgia Tech High-Power Electric Propulsion Laboratory houses the 
experiment and produces a base pressure of 1x10-9 Torr before HET operation begins. The chamber 
maintains a pressure of 1.1x10-6 Torr-Xe near the chamber wall during HET operation. 

 

C. Vacuum Facility 
 This experiment was performed in the Vacuum Test Facility 2 (VTF-2) at HPEPL shown in Fig. 
6. VTF-2 is 9.2 meters long and 4.9 meters in diameter. One 3800 CFM blower and one 495 CFM rotary-
vane pump bring the system to vacuum. Ten liquid nitrogen cooled CVI TMI re-entrant cryopumps with a 
combined pumping speed of 350,000 l/s on xenon bring the chamber to a base pressure of 8.9 x 10-10 
Torr. A Stirling Cryogenics SPC-8 RL Special Closed-Looped Nitrogen Liquefaction System supplies 
liquid nitrogen to the cryopump shrouds. MKS 1179A mass flow controllers meter the propellant and a 
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constant volume calibration system is used to calibration the mass flow rate. Two ionization gauges, 
Varian 571 and UHV-24, are mounted on either side of the chamber. 
 

 
Fig. 6.  VTF-2 Vacuum test facility at HPEPL (not to scale) 

 

III. RESULTS AND DISCUSSION 
A. Test Current Data 

 Fig. 7 shows the thruster cathode array current and applied potential data as a function of time 
over the duration of the experiment. The collected data can be broken up into four distinct stages based on 
how the experiment was conducted. Before data collection, the HET is operated nominally with the 
hollow cathode. The isolation switch between the HET and CNCC sub-circuits was open during this 
portion of the experiment. Once the HET operating voltages and currents stabilized, the data acquisition 
program began capturing data and the isolation switch was closed. This integrated the CNCC sub-circuit 
into the HET sub-circuit. The data acquisition system measured baseline data for the circuit with the 
CNCCs unbiased for 2 minutes before biasing the CNCCs. Once the CNCCs were biased, the system 
operated for five minutes before all CNCCs appeared to be shorted between their cathode and gate 
electrodes. Data acquisition ended at this point. The entire test sequence occurred during 40 minutes of 
HET operation. The test was concluded at 40 minutes in case the HET plasma was causing damage to the 
CNCCs. 

 The first stage covers the first two data points. The switch connecting the HET and CNCC 
circuits is open during this stage. Consequently, no current travels between the CNCC circuit and HET 
circuit (stated as anode current). There are 68-200 µA of gate and cathode current during this period. The 
HET was already running at steady-state at the beginning of the test, so the current is likely noise from the 
charge exchange (CEX) ion and hollow cathode electron collisions. 

 The second stage consists of the next 9 data points. The switch isolating the CNCC and HET 
circuits is closed at the beginning of this stage, but the CNCC power supply has not started outputting. 
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Power supply output starts during the middle of the second stage, as seen by the small jump in gate 
voltage from 0 V to 0.575 V at 1.5 minutes. Negative gate current, positive anode current, and positive 
cathode current result from closing the switch. The currents detected correspond with CEX ions 
bombarding the CNCC surfaces, which are now set to the negative discharge potential on the HET circuit.  

 The third stage consists of the large positive plateau, where the experiment software interpreted 
the currents detected as the trigger to initiate a current-controlled test. At this point, the gate potential 
rises to +50 V from the cathode potential, which is equal to the HET discharge negative potential (about  
-10 V).  

 

 
Fig. 7.  Full thruster cathode array current data. 

 
 A previous publication details typical performance of the CNCC technology used in this work 

[16] and reveals limited cathode current density (< 50 µA/cm2) at a bias of 50 V. In contrast, the 
measured cathode current from this test equates to a current density of roughly 650 µA/cm2. The order of 
magnitude difference in documented performance provides evidence that charged particles from the 
plasma and electrical shorting form the primary contributions to the currents measured. There is a large 
positive gate current, which corresponds to electrons from the hollow cathode colliding with the 
positively biased gate. Enough electrons arrive at the gate that they reverse the desired direction of current 
between the HET and CNCC sub-circuits. This effect is manifested as a negative anode current. There is 
also positive cathode current, which corresponds with CEX ions colliding with the CNT and exposed 
package areas seen in Fig. 2. The gate + anode current values diverge from the cathode current because 
the experiment software stopped acquiring cathode current data on some channels even though they were 
still active.  

 The fourth stage consists of three data points. In this stage, the emitter channels are manually shut 
down. The experiment software experienced an error where it stopped measuring the cathode current on 
channels without disconnecting them from the cathode bias. This software error was compounded by a 
circuit flaw that allowed the common gate electrode to be biased by the power supply even when the 
cathode channel was disconnected. Cathodes on disconnected channels float to the plasma potential, 
resulting in an electric field which has lower magnitude than that generated by the completed circuit still 
forming between the cathode and gate electrodes. Since the anode and gate electrodes are common, the 
current from the disconnected channels is detectable on these electrodes while the data acquisition system 

0 

10 

20 

30 

40 

50 

60 

-20 
-15 
-10 

-5 
0 
5 

10 
15 
20 
25 
30 
35 

0 2 4 6 8 

V
ol

ta
ge

 (V
) 

C
ur

re
nt

 (m
A

) 

Time (min) 

Cathode Current (mA) Anode Current (mA) Gate Current (mA) 

Gate+Anode Current (mA) Gate Voltage (V) 

I II III IV 



 

9 
 

does not measure the current from the cathode side of the circuit. These two issues together account for 
the sharp decline of the gate + anode current and cathode current. They also account for the reduction in 
discrepancy between the gate + anode current and the cathode current. 

 

B. Before and After SEM Comparison 
 The proximal and distal nonfunctioning CNCC samples underwent repeatable SEM imaging both 

prior to and after HET exposure. Fig. 8 shows a single emission feature on the distal sample prior to (Fig. 
8a) and after (Fig. 8b) the HET test. Close examination reveals the overall structure to be identical 
between the two images, with two exceptions. One, the post-exposure image shows some particulate 
debris present in the emission feature marked with arrows. Both the proximal and distal samples have a 
few features with similar debris accumulation. This particulate debris could be from spallation on part of 
the array. The debris could also be from handling the devices between the two images when they were 
unavoidably transported outside of a cleanroom environment for testing.  

 Two, the before and after images in Fig. 8 show differences in contrast and charging. A 
difference in contrast could indicate topological changes on the surface, but the difference is most likely 
attributable to charging of the gate electrode and a change in the accelerating voltage on the SEM. The 
accelerating voltage is at 1 kV in Fig. 8b as opposed to 10 kV in Fig. 8a because the CNCC is not 
removed from the electronic package after the test to avoid damage from removal. SEM images from 
before HET testing were taken without the package. The dummy sample was not wire bonded to the 
package, which made it very difficult to make a quality contact to the floating gate to ground it during 
imaging. The poor contact caused significant charging of the gate during imaging, even with a lower 
accelerating voltage. In addition, the magnetic package (Ni-based Kovar) can cause significant imaging 
problems due to its interactions with the imaging electron beam. All of the post HET test SEM images in 
this section contain this variation. 

 

 
Fig. 8.  Before (a) and after (b) SEM images of the same emission feature from the distal sample. 
Arrows in (b) point to particulate debris present in the feature after exposure to the HET 
environment. 
 

 Fig. 9 shows a fortuitously mis-grown CNT on the poly-silicon surface of the distal sample before 
(Fig. 9a) and after (Fig. 9b) HET exposure. The position of the CNT remains largely unaffected between 
the two images, but some changes are present. In particular, the part of the CNT in the upper left of both 
images appears to have flipped or twisted, while the component of the CNT on the lower right of the 
image appears to have untwisted and dropped slightly into the nearby etched pit. These changes in 
position could be due to HET exposure or to handling during the installation and removal of the distal 
sample from the thruster cathode array. Previous studies report motion of CNTs under the presence of 
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electric fields and during field emission [18, 19]. While this CNT cannot have performed field emission, 
it was exposed to the HET plasma and the electric field variations present at its length scale could be 
responsible for this observed behavior. A more detailed analysis of this effect is beyond the scope of this 
work. 

 

 
Fig. 9.  Before (a) and after (b) images of the same stray CNT on the poly-silicon surface of the 
distal sample. The CNT has moved slightly between imaging sessions. 

 

 
Fig. 10.  Before (a) and after (b) images of the same CNT bundle on the proximal sample. The CNT 
bundle appears to be unaffected by exposure to the HET environment. 

 
 Fig. 10 shows a single CNT bundle on the proximal sample before (Fig. 10a) and after (Fig. 10b) 

HET exposure. Like most emission features on the CNCCs exposed to the HET environment, there are no 
observable changes in the emitter geometry after exposure. Close examination of these images reveals no 
observable differences in the poly-silicon gate, the SiO2 insulator, the silicon substrate, or the CNTs. The 
remarkable similarity between the two images in Fig. 10 proves that CNCC technology can survive short-
term exposure to a near HET environment when not biased and shielded by the gate electrode. Fig. 11 
extends this result to functioning, shielded emission features by indicating no damage after exposure to 
the HET environment when compared with a similar structure in Fig. 8a. 
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Fig. 11.  SEM image of a single emission feature on a CNCC which was biased while inside the HET 
environment. The emission feature appears undamaged after operation in the HET environment. 

 

C. Arcing and Sputtering 
 While most emission features on the CNCCs appear unaffected by operation in and exposure to 

the HET environment, arcing failure between the gate and cathode electrodes observable outside of a 
HET environment still occurs on some features. Additionally, significant sputtering of the gold plating on 
the electronic packages resulted in shorts developing on some packages between the package body and 
gate electrode pins. These shorts are due to the sputtered gold adhering to the insulation between the gate 
electrode pins and the package body, thus creating an electrically conductive pathway.  

 The symmetry of the array allows for CNCCs placed in the same slot across different quadrants to 
be treated together. Fig. 12 maps the number of occurrences of arcing failure and gold sputter failure 
across the thruster cathode array. Each slot had four packages placed around the array. The number on the 
top in each slot indicates the number of electronic packages that shorted from sputtered gold, whereas the 
number on the bottom indicates the number of CNCCs that failed from arcing between the cathode and 
gate electrodes. In this depiction, the BHT-200 lies beyond the bottom of the image.  

 

 
Fig. 12.  Schematic of one quadrant of the thruster cathode array. The numbers on the top of each 
CNCC location indicate the number of packages in this slot around the array that shorted from 
sputtered gold, whereas the number on the bottom indicates the number of CNCCs that suffered 
failure from arcing.  
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 Plotting the sputtering short data in this manner reveals a clear transition from packages which 
shorted due to sputtering at positions close to the HET to packages that did not short due to sputtering far 
from the HET. Careful examination of the insulation on the electronic packages reveals that all packages 
experienced sputtering, although some packages did not experience sufficient sputtering to create a 
conductive pathway. The amount of material sputtered is a function of the incident energy of the ions, the 
binding energy of the sputtered material, the relative atomic masses, and the number of incident ions [20]. 
Since significant sputtering occurred on the farthest packages, it is likely that variation in the ion density 
is responsible for the noted transition. Also of note, the quadrant of the array that was closest to the 
hollow cathode did not exhibit any observable differences compared with the other three quadrants. 

 The sputtering varies with distance from the HET as a result of variation in the ion density, but 
the frequency of arcing failure does not share this variation. This indicates that the variation in the ion 
density does not significantly alter the likelihood of an arc failure occurring on a CNCC sample.  

 

IV. CONCLUSIONS 
 This effort is the first experimental study of CNT emitters in an operational HET environment. 

While field emission from the Spindt-type emitters was undetectable, the experiment yielded valuable 
insight into the behavior of these devices in the HET environment and highlights design areas for 
refinement. Emission current data gathered during thruster cathode array operation suggests a significant 
flow of CEX ions and electrons to the CNCC electrodes. CEX ions that flowed to the array sputtered 
appreciable amounts of gold from the electronic packages that the CNCC devices were mounted on. 
Despite this sputtering of gold, there is no evidence of sputtering on the CNCC devices themselves after a 
total 40-minute exposure to the HET environment. SEM imaging indicates possible spallation from part 
of the thruster cathode array, but the evidence is more likely an artifact of handling the devices outside of 
a clean room environment. Some CNTs, which remained unbiased during the test, moved slightly in 
between the before and after SEM imaging sessions. The motion could be from documented effects of 
electric field on CNT structures or from handling of the devices. Examination of the locations where 
different types of failure occurred on the thruster cathode array reveal a positional correlation for sputter-
induced short circuiting on the electronic packages, but no positional correlation for arcing failure typical 
of this CNCC design. A lack of correlation between the two failures implies that the variation in ion 
density is responsible for the variation in sputtering, but does not affect the likelihood of arcing failure.  

 The effect of backflow of ions and electrons from the HET and hollow cathode to the thruster 
cathode array surfaces was more severe than anticipated. A refined design that better shields and insulates 
the electrodes from the charged species in the plasma will see a dramatic improvement in performance 
over those CNCCs tested in this work. Future work will include a redesign of the thruster cathode array 
and  extended  operation  of  the  CNCC’s  in  the  plasma  environment near the circumference of the thruster 
at the exit plane.. 
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